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Abstract 

Discretely topologized subrings of fields with an absolute value are considered. 

We use Z, Q, R, C, and E,o to denote the set of all rational integers, rational 

numbers, real numbers, complex numbers and positive elements of a subset E of R, 

respectively. The symbols 1 loo and 7, will denote the usual absolute value and the 

usual topology on any subfield of C. 

If E is a subset of an algebraic structure containing 0, then E* denotes E\(O). In 

a ring R with identity e, we usually denote by n and Z (rather than n . e and Z e) 

the integer n in R and the ring of integers of R. We say a ring has pure characteristic 

n (pure characteristic 0) if the order of each nonzero element of the additive group 

of the ring is n (respectively, infinity). By a ring of pure characteristic we mean a 

ring of pure characteristic n for some n 2 0. Obviously, each field is a ring of pure 

characteristic. Recall that an order of a field F is a subring of F containing the identity 

and having quotient F. 

Also recall that a field with an absolute value is either a rank one nonarchimedean 

valued field or a subfield of the complex numbers with a power of the usual absolute 

value (see, e.g., [4, Theorems 12.1.1 and 15.2.21). 
Containment is the partial order for a collection of ring topologies considered as a 

lattice. The notation VE or a V b denotes a supremum, and AE or a A b denotes an 

infimum. The trivial and discrete topologies on any set will be denoted by 0 and 1, 

respectively. 

If U is a bounded neighborhood of zero in some ring topology on a field F, U 
determines this topology uniquely, since {au : a E F*} is a neighborhood base at 

zero; 7” will denote this topology. 

By a discrete subring (subgroup) of a topological ring (group) we mean a subring 

(subgroup) which is discretely topologized in the induced topology. 
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In [2], the fact that Z is discrete in (Q, 7,) was used to define ring topologies on 

Q finer than 7z. In [4] it was observed that the same construction could be used to 

define ring topologies on any field with an absolute value that contained a discrete 

subring whose quotient is the field. In [5, 61, it was observed that a similar technique 

generalized two constructions of Mutylin of ring topologies on Q that are not finer 

than any topology induced by a valuation. (The best known open question in the theory 

of commutative topological fields is whether or not there is a minimal ring topology 

which is not induced by a valuation; and examples of ring topologies not finer than 

any topology induced by a valuation may help answer this question.) We consider here 

the problem of finding discrete subrings of fields with an absolute value. 

This is a special case of the following fairly natural problem: Describe all discrete 

subrings (subgroups) of a topological ring (topological group). 

By homogeneity, it is obvious that a subgroup H of a topological group G with 

identity e is discrete if and only if H\{e} is bounded away from e. A discrete subgroup 

of a Hausdorff topological group must be closed: If the subgroup H clusters at any 

point a E G, then H = H-’ clusters at a- ‘. If U is a neighborhood of the identity 

in G, then there are h, k E H such that h E Ua and k E a-‘U\{h-‘}, so hk = 
(ha-‘)(ak) E (UU)\{e}. Thus, H clusters at e. 

Suppose the quotient of a ring R is the field F. If 7 is any ring topology on F, 

then R is ‘T-discrete if and only if 7~ V 7 = 1. 
The following elementary observation will often be used here: 

Theorem 1. Suppose R is a subring of a nontrivial absolute valued field (F, 1 I). 

(1) R is discrete if and only ij” AIR*/ > 1. 

(2) If R is discrete, then each element invertible in R has absolute value one. 
(3) rf R is discrete and the quotient field of R is F, then R is unbounded. 

An obvious generalization of (1) above is the following: If (R, II/I) is a normed ring 

(as defined, e.g., in [3, Definition 5.1.11) which has zero as its only algebraic nilpotent 

and which is discrete in its norm topology, then A((R*IJ > 1. This follows from the 

fact that an element with norm less than one is nilpotent. 

Example 2. By checking each pair of elements to see that the norm requirements 

for sums and products are met, we see that a nonarchimedean norm is defined on 

R = Z/(4) if and only if ))O(I = 0 and 0 < ]]2/1,1 < [Ill] = l/31(. Note 22 = 0. We 

have AIIR*)I = ~~2~~, which may be less than 1. 

The intersection of a compact subset and a closed discrete subset of a Hausdorff space 

is finite. Thus, a closed discrete subset of a o-compact HausdorII space is countable. 

Since a field with a nondiscrete locally compact ring topology is a-compact (and has 

cardinality c), discrete subrings (and their quotient fields) in locally compact fields are 

countable. Therefore, a necessary condition that a subfield K of a nondiscrete locally 

compact field have a discrete order is that K be countable. Discrete subrings of locally 
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compact fields (viz., finite extensions of the p-adic fields, completions of function fields 

over a finite field, and R and C) are considered further below. 

Suppose R is a discrete subring of a field F with a real valued nonarchimedean 

valuation, 1 1, and x is an element in F with valuation at least one. If the multiplicative 

semigroup generated by 1x1 and the multiplicative group generated by IR*l are disjoint, 

then R[x] is discrete also. (The terms of a polynomial in x with coefficients in R 

will necessarily have distinct valuations, which implies the valuation of the sum is the 

maximum of the valuations of the terms.) For example, if K is a discrete subfield of 

an absolute valued field F and x E F has valuation greater than one, then K[x] is 

discrete. 

Similar reasoning (see Theorem 4 below) provides a partial answer to the following 

natural question: If R is a discrete subring of a topological ring E with identity 1, when 

will R[l] (which equals R + Z) be discrete? The proof of [4, Theorem l] implicitly 

used the fact that this question has a positive answer when E is a field with an absolute 

value. 

Lemma 3. A topological ring E of pure characteristic with identity e # 0 has a 

discrete subring distinct from (0) if and only if the ring of integers of E is discrete. 

Proof. If Z is not discrete and x is a nonzero element of a subring (or, more generally, 

any additive subsemigroup) R of E, then ZX is a nondiscrete subset of R. q 

If E is a ring with identity e # 0 and with pure characteristic n, then n is prime 

or zero: If n = mk, where m and k are positive integers less than n, then m, viewed 

as an integer of E, has order k instead of the hypothesized value n. Thus, the ring Z 
of integers of E is an integral domain (and consequently 0 is the only algebraically 

nilpotent integer). Thus, if II]) is a norm on E with respect to which Z is discrete, then 

r\JIZ*l( > 1. 

Theorem 4. (1) IfR # (0) is a discrete subring of a normed integral domain (E, III/) 

with identity, then R[l] is discrete. 
(2) If R # (0) is a discrete subring of a nonarchimedean normed ring (E, ((II) of 

pure characteristic with identity and \(R*IJ n jlZ*)l = 0, then R[l] is discrete. 

Proof. (l)Ifs~R*andr+n~(R+Z)*,wherer~Randn~Z,then 

1 I II+ + n>ll L ll4lllr + 41. 

By fixing s and letting r and n vary, we see that (R+Z)* is bounded away from zero. 

(2) For r and n as in the proof of (1) above, either r # 0 or n # 0. By the 

disjointness hypothesis 

llr +nll = max(Ilrll, Ibll> 2 (4lR*ll) A (AllZ*ll) > 0. 0 
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Example 5. In the ring E = Z x Z topologized by the norm Il(a,b)]l = max(]aip, lb/i), 

where ( Ip is the p-adic absolute value and 1 1, is the trivial absolute value, the subring 

(0) x Z and the ring Z( 1,1) of integers of E are discrete, but the ring ((0) x Z)[ l] 

(which is all of E) is not discrete. 

By Zorn’s lemma, every discrete subring of a field with an absolute value is con- 

tained in a maximal discrete subring. If R is a discrete subring of a field with an 

absolute value, then the quotient U-‘R of R with respect to the semigroup U of ele- 

ments in R with absolute value one is also a discrete ring, provided U is not empty. If 

R is a maximal discrete subring, then R = (0) or 1 E R, by Theorem 4, which implies 

U # 0. Therefore, an element in R is invertible if and only if the element has absolute 

value one. 

Theorem 6. The only discrete subring of a rank one valued extension of Q with a 
p-adic valuation is (0). 

Conversely, ifF is a jeld with a nontrivial valuation v that is not an extension of Q 
with a p-adic valuation, then F contains an unbounded discrete unique factorization 
domain R. 

Proof. The first statement follows from Lemma 3. 

Suppose (F,v) is not an extension of a p-adic valuation. If F is a subfield of 

C with a power of the usual absolute value, then we let R = Z. Otherwise F is 

nonarchimedean and the prime subfield FO of F has trivial valuation. Let D consist 

of one element from each equivalence class of the following equivalence relation on 

the set of elements greater than one in the value group: g, h E v(F*) are equivalent 

if there is a natural number n such that g < h” and h < g”. If A c F is such that 

v/A : A - D is bijective, then R = Fo[A] is a discrete subring with a cofinal set of 

values. 0 

Let A4 denote the function field K(x) over an arbitrary field K, and let ( I denote the 

(l/x)-adic valuation of M. The power series field K(( l/x)) is the completion A? of M. 

For u E A?\K, K[u] is a discrete subring of A? if and only if IuI > 1. The previous 

discussion establishes the claim except when (u] = 1. If IuI = 1, then u = Ci,o ai( l/x)‘, _ 
aiEK,ao#O.Thus,-ao+uEK[u],andI-ao+ul < 1. 

The ring K[x] is a maximal (but not the largest) discrete subring of fi: If u is 

an element in a discrete subring R containing K[x] and u has series representation 

C,” ai( l/x)‘, th en we may write u = f + d, where f is (the polynomial which is) the 

sum of the terms in the representation with nonpositive index and d (with (dl < 1) is 

the sum of the terms with positive index. Since d = u - f E R, we have d = 0 and 

u = f E K[x]. 
If R is a discrete subring of M and (when K n R # (0)) KO is the quotient field of 

K n R in K, then R[Ko] = ((K n R)*)-‘R is a discrete ring. 

Each maximal discrete subring R of M contains a subfield of K: 1 E R, so K n R is 

a subring of R whose quotient is in R. 
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If u is an element of a commutative ring with identity, the subring generated by u 

is uZ[u] = {xi >, niui : ni E Z}, and (uZ[u])[l] = Z[u]. 

Theorem 7. Suppose u E $\K and IuI = 1. Zf u has canonical representation u = 

C& ai(l/x)‘, h w ere each ai E K and a0 # 0, then the following are equivalent: 

(1) uZ[u] is discrete. 
(2) Z[u] is discrete. 

(3) a0 is not algebraic over the prime subfield of K. 

Proof. Since Z[u] and uZ[u] are homeomorphic, (1) and (2) are equivalent. Now Z[u] 
is discrete if and only if each sum Ci.,kniui, with ni E Z and nk # 0, has valuation 

greater than or equal to one. Let d =-u - a~, and note IdI < 1. Use the binomial 

theorem and collect the highest powers of a0 in each binomial expansion to obtain 

that 

Cniu’ = Cni(ao + d)’ = (‘&ah) + dy, 

where ]yI 5 1. Therefore, 1 c nid 1 < 1 if and only if C n& = 0. 0 

Suppose u E M and u = f/g, where f and g are relatively prime polynomials in 

K[x]. Since (u] = 1, f and g have the same degree, say n. Let fi and gi be the 

coefficients of xi in f and g, respectively. By “long division”, we see that a0 = fn Jg,,. 

Corollary 8. Zf K is algebraic over its prime sub$eld (as is the case if M has locally 

compact completion) and R is a discrete subring of A?, then IuI > 1 for each element 
u E R\K. 

Proof. If K is algebraic over its prime field and R is a discrete subring of M and 

u E R\K, then the ring generated by u (which is contained in R) is discrete. Therefore, 

]u( > 1. 0 

We consider discrete subrings of the real and complex numbers. 

Lemma 9. Zf R is a subring of an integral- domain E, a E E, the identity of E is in 
R, and Ra is a ring, then a E R. 

Proof. Since a2 = ra for some r E R, we have a = r E R. 0 

Theorem 10. In (Q, ) Ia) the ideals nZ, n E Z, are discrete. Conversely, every dis- 
crete subring of (R,) loo) is an ideal of Z. 

Thus, Q is the only subjeld of R with a discrete order. 

Proof. Let R be a nonzero discrete additive subgroup of the real numbers R. Then 

R is cyclic (i.e., R = Za, for some a E R) rather than dense. If Za is a ring, then 

aEZ. 0 
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Observe that a discrete subgroup of C will have finite intersection with any bounded 

set. 

Lemma 11. Suppose L = Zu + Zv, where u and v are complex numbers. For each 

x E L*, the set (Qx) fl L* has an element w with minimum absolute value. For such 
an element w, L = Zw + Zy for some y E L. 

Proof. Case 1: u and v are linearly independent over Q. Let x = m’u + n’v, where m’ 

and n’ are integers with greatest common divisor g and let m = ml/g and n = n’jg. 

Let 

w:=ix=mu+nvE(Qx)nL.*. 

We show [WI is minimal in I(Qx) fl L*l: Given 

;x=ku+Zvr(Qx)nL* 

(where c, d, k, 1 E Z), we equate coefficients to obtain 

zm’=k 
d 

and Cn’ = 1; 
d 

Since m and n are relatively prime, 

Therefore, (ICU + Zv( = ljwl 2 IwI. 

m m’ k -_=-_=- 
n II’ I’ 

there is an integer j such that k = jm and 1 = jn. 

There are integers a and b such that am+ bn = 1. Thus, the determinant with respect 

to the ordered basis u, v of the Z-linear map A : L - L determined by 

Au = w, Au = -bu+av 

equals one, so L = Zw + Z(-bu + au). 
Case 2: u = v = 0. Then L* = 0 and the theorem is vacuously true. 

Case 3: Exactly one of u and v is zero. Then we may choose w to be the nonzero 

one and y to be 0. 

Case 4: u and v are dependent over Q, but neither is zero. Then mu = nv for some 

rational m and n, and, by multiplying both sides by an appropriate integer, we assume 

m and n are relatively prime integers. Let t = mu(= nv), and let am + bn = 1 for 

integers a and b. Then 

bu+av=bt+at = (bn+am)t 
m n mn 

=&EL. 

Conversely, if x = cu + dv E L, then 

t 
x= 

cn(mu) + dm(nv) 

mn 
= (cn + dm)-. 

mn 

Thus, L = Z(t/mn), so we may let w = t/mn and y = 0. Cl 
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Theorem 12. A discrete subring R of the complex numbers which contains a nonzero 
real number, but which is not contained in the reals, is of the form R = Zu + Zv, 

where u is an integer and v satisfies the equations 

b+dm 
v = 

2 ’ 
v2 = au + bv 

for some integers a and b such that 

au < 0, lb] < 2J-au. 

Conversely, if u, a and b are integers satisfying the inequalities above and v is 

de&red by the first equality displayed above, then Zu + Zv is a discrete ring and the 

second equality displayed above is also satisfied. 

Proof. A discrete additive subgroup R of the complex numbers is of the form Zu or 

Zu + Zv, where u and v are linearly independent over the real numbers (see, e.g., [l, 

p. 1501). If R is a ring and R = Zu, then, by Lemma 9, u E Z and R c R. Therefore, 

if R is as in the statement of the theorem, R = Zu + Zv, where (by Lemma 11) we 

may assume u is real. Since u2 E R, u2 = mu + nv for some integers m and n. In 

fact n = 0, because nv = u2 - mu E R. Thus, u = u2/u = mu/u E Z. Since v2 E R, 
v2 = au+ bv for some integers a and b. Applying the quadratic formula to this equation 

in v and taking into account that v is not real completes the proof of the first statement 

of the theorem. (If v is the solution to the quadratic with minus the radical, then note 

R = Zu + Z(-v) and 

(-V)2 = v2 = au + bv = au + (-b)(-v), 

-b+e 
-v = = (-b)+ dm. 

2 2 7 

so we may replace v by -v in the argument.) 

To prove the converse let R = Zu + Zv. Then R is an additive group; R is a ring 

(i.e., it is also closed under multiplication) if and only if u2,v2, uv E R. For u and 

v as described in the theorem u2 and uv are obviously in R and v2 = au + bv E R 
because v has been defined to be a root of this equation. 0 

Corollary 13. A subfield K (with the relative topology) of the complex numbers with 

the usual topology contains a discrete order if and only if K = Q or [K : Q] = 2 
and K dR. 

The discrete subrings of C with the most symmetry properties as lattices (in the 

crystallographic sense) are the rectangular lattices Z[G], n E Z,a (obtained in 

Theorem 12 by letting u = 1, a = -n, and b = 0) and the hexagonal lattice Z[enii3] 

(the ring generated by the sixth roots of unity; obtained in Theorem 12 by letting u = 

-a = b = 1). Since Z[n] is a standard example of a ring in which factorization 
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is not unique [4 = 22 = (1 + J=7)( 1 - J--5)], we see that a discrete subring of a 

nontrivial absolute valued field may not be a unique factorization domain. 
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